Lesson Plan

Name of the Faculty	:	Sh. Munish Kumar Jain
Discipline	:	Mechanical Engineering
Semester	:	5 th
Subject	:	Machine Design
Lesson Plan duration	:	17 weeks (15.09.2022 to 16.01.2023)
Work load per week	:	Lecture – 04, Practical – 00

Week	Theory		EXECUTION	
	Lecture	Торіс	Date	Sign.
	Day	(Including assessment/test)		
1^{st}	1^{st}	Introduction about the subject and brief overview		
	2^{nd}	Unit 1: Introduction		
		1.1 Design – Definition, Type of design, necessity of		
		design		
	3 rd	1.1.1 Comparison of designed and un designed work,		
		1.1.2 Design procedure		
	4^{th}	1.1.3 Characteristics of a good designer,		
		1.2 Design terminology: stress, strain, factor of safety,		
		factors affecting factor of safety		
2^{nd}	5^{th}	1.2 stress concentration, methods to reduce stress		
		concentration		
	6^{th}	1.2 fatigue, endurance limit		
	7 th	1.2.1 General design consideration		
	$8^{ ext{th}}$	1.2.2 Codes and Standards (BIS standards)		
3 rd	Q th	1.3 Engineering materials and their mechanical		
5		properties		
		1.3.2 Properties of engineering materials: elasticity		
		nlasticity		
	10^{th}	1.3.2 malleability ductility toughness hardness and		
	10	resilience		
	11^{th}	1.3.2 Fatigue, creep, tenacity and strength etc.		
	12^{th}	1.3.3 Selection of materials, criteria of material		
		selection		

4^{th}	13 th	Unit 2: Design Failure	
	10	2.1 Various design failures-maximum stress theory	
	14^{th}	2.2 Maximum strain theory, Classification of loads	
	15^{th}	2.3 Design under tensile, compressive and torsional	
		loads	
	16 th	2.3 Design under tensile, compressive and torsional	
		loads	
5^{th}	17^{th}	Numerical Problems	
	4		
	18^{tn}	Unit 3: Design of Shaft	
		3.1 Type of shaft, shaft materials	
	th		
	19 ^{un}	3.1 Type of loading on shaft, standard sizes of shaft	
		available	
	a oth		
	20 ^{an}	3.2 Shaft subjected to torsion only, determination of	
		shaft diameter (hollow and solid shaft) on the basis of:	
∠th	0 1 St	Strength criterion	
0	21	3.2 Shaft subjected to torsion only, determination of	
		shaft diameter (nollow and solid shaft) on the basis of:	
	aand	Rigidity chieffoli 2.2 Determination of shoft diameter (hollow and solid	
		shaft) subjected to Rending	
	23 rd	3.4 Determination of shaft diameter (hollow and solid	
	23	shaft) subjected to combined torsion and bending	
		shart) subjected to combined torsion and bending	
	24^{th}	Numerical Problems	
7 th	25^{th}	1 st sessional test (Tentative)	
	4		
	26^{un}	Assessment	
	arth		
	27ª	Unit 4: Design of Key	
		4.1 Types of key, materials of key, functions of key	
	28 th	4.1 Types of key materials of key functions of key	
	20	4.1 Types of key, materials of key, functions of key	
8 th	29 th	4.2 Failure of key (by Shearing)	
	/		
	30^{th}	4.2 Failure of key (by Crushing)	
	20		
	31 st	4.3 Design of key (Determination of key dimension)	

	32 nd	4.4 Effect of keyway on shaft strength	
9 th	33 rd	Various Figures and problems	
	34 th	Unit 5: Design of Joints	
		Types of joints - Temporary and permanent joints,	
	o -th	utility of various joints	
	35 th	5.1 Temporary Joint:	
		5.1.1 Knuckle Joints – Different parts of the joint,	
	36 th	5 1 1 Type of knuckle Joint	
	30	5.1.1 Type of knuckle joint,	
10 th	37 th	5.1.1 design of the knuckle joint	
	38 th	5.1.1 (Figures and problems)	
	39 th	5.1.2 Cotter Joint – Different parts of the spigot and	
	t e th	socket joints	
	40 ^m	5.1.2 Design of spigot and socket joint	
11 th	41 st	Figures and problems	
	42^{nd}	5.2 Permanent Joint:	
		5.2.1 Welded Joint - Welding symbols. Type of welded	
		joint	
	13 rd	5.2.2 Strength of parallel and transverse fillet welds	
	75	5.2.2 Sublight of parallel and transverse fillet welds	
	44^{th}	5.2.2 Strength of combined parallel and transverse	
		weld	
1.0 th	15 th	2 nd agging 1 4 get (Tontoting)	
12	43	2 sessional test (Tentative)	
	46^{th}	Assessment	
	-		
	47^{th}	5.2.3 Riveted Joints. : Rivet materials, Rivet heads,	
		leak proofing of riveted joint – caulking and fullering	
	t e th		
	48 th	5.2.4 Different modes of rivet joint failure	
13 th	49^{th}	5.2.5 Design of riveted joint – Lap and butt, single and	
		multi riveted joint.	
	.1		
	50^{th}	Unit 6: Design of Flange Coupling	
		Necessity of a coupling, advantages of a coupling,	
	~ 1 St	types of couplings	
	51	(both protected type and upprotected type)	
		(both protected type and unprotected type)	

	52 nd	Unit 7: Design of Screwed Joints	
		7.1 Introduction, Advantages and Disadvantages of	
41-		screw joints, location of screw joints	
14 th	53 rd	7.2 Important terms used in screw threads, designation of screw threads	
	54^{th}	7.3 Initial stresses due to screw up forces, stresses due	
		to combined forces	
	55 th	7.4 Design of power screws (Press)	
	56 th	7.4 Design of power screws (Press)	
15^{th}	57 th	7.4 Design of power screws (screw jack)	
	58 th	7.4 Design of power screws (screw jack)	
	59 th	7.4 Design of power screws (screw clamp)	
	60 th	7.4 Design of power screws (screw clamp)	
16 th	61 st	3 rd sessional test (Tentative)	
	62 nd	Assessment	
	63 rd	Revision	
	64 th	Revision	
17 th	65 th	Revision	
	66 th	Revision	
	67 th	Revision	
	68^{th}	Revision	